Genome Comparison

Genome Comparison is a project of the Bioinformatics Team at the Department of Biochemistry and Molecular Biology of Fiocruz that used the compute power of World Community Grid to calculate the sequence similarity level among the whole protein content encoded in completely sequenced genomes of hundreds of organisms, including humans and several other species of medical, commercial, industry, or research importance. The calculated similarity indices will be used, together with standardized Gene Ontology, as a reference repository for the annotator community, providing an invaluable data source for biologists.
- The resulting all against all comparative database will be of great use as a reference for many research projects on functional aspects, biochemical pathways, evolutionary aspects, and an invaluable source for correct annotation of previously sequenced and newly obtained genome sequences
- Precise annotation, assignment of possible functions to hypothetical proteins of unknown function, and the description of evolutionary relationships between proteins will be a major step forward towards our understanding of genome composition, genome evolution and cellular function
- The contribution to the understanding of host-pathogen relationships, and the means to develop new drugs and vaccines, will be of utmost benefit to the scientific community at large
- Research on biodiversity and new organisms will greatly benefit from reliable comparative data
- Future new sequence releases will build upon the growing cross-referenced database
The software automatically downloaded small pieces of data (predicted protein sequences) and performed sequence comparisons to accurately calculate the similarity level among them. After the information was processed by members computers, the results were sent by World Community Grid to Fiocruz where they are being analyzed by the Bioinformatics Team at the Department of Biochemistry and Molecular Biology. Large-scale comparative analysis applying Smith-Waterman algorithm is computationally intensive and demanded exceptionally huge computational power, which is why it was a perfect project for World Community Grid.